Particle Accelerators and Applied Superconductivity in Asia

Akira Yamamoto

(KEK and CERN)

AMICI meeting, 18 April, 2017

Outline

- Introduction/Overview
- Particle Physics
- Other Fields
- Future Prospects

Superconducting Acc. Labs in Asia

Acc. Programs and Key Technologies

Acc. Programs and Key Technologies

Progress in SC Accelerators

Location	Accelerator	E [TeV]	B [T]	Operation	Technology	
Fermilab	Tevatron	2 x 0.9	4.0	1983-2011	SC Magnet	
DESY	HERA	0.82	4.68	1990-2007	SC Magnet	
BNL	RHIC	2 x 0.1	3.46	2000 -	SC Magnet	
CERN	LHC	2 x 7	8.36	2009 -	SCM & SRF	
CERN	FCC/HE-LHC	2x50 / 2x14	16	Study	SCM & SRF	
IHEP	SPPS	2x50	16	Study	SCM & SRF	
Location	Accelerator	E [GeV]	G / (Freq.) [MV/m] / [GHz]	Operation	Key Technology	
КЕК	TRISTAN	2 x 30	5 (0.5)	1986-1995	SRF	
CERN	LEP	2 x 105	5 (0.5)	1989-2000	SRF	
JLab	CEBAF	6	5~12 (1.3)	1995~	SRF	
DESY	EXFEL	14	24 (1.3)	2017 ~	SRF	
Global	ILC	2 x 250	31.5 (1.3)	Plan	SRF	
CERN	FCC-ee	2 x 175	TBD	Study	SRF	
IHEP	CEPC	2 x 120	TBD	Study	SRF 6	

Outline

- Introduction/Overview
- Particle Physics
- Accelerator Applications

Photon Science, Medical, Energy, and ...

- Future Prospects
- Summary

Electron machines in Tsukuba and proton machines in Tokai

orea

Eukuoka -

Tanega shima

Shikoku

lonshu

Tokai

Japan ISUKUDas Nagoya Nagoya

Oo Osaka 🖂 🧹

© 2010 ZENRIN © 2010 Europa Technologies © 2010 Geocentre Consulting Data © 2010 MIRC/JHA 139°30'09 59" E elev 42 m 38*24'54 24" N

KEKB and Belle Super-KEKB and Belle II

J-PARC Facility

Joint Project between KEK and JAEA

T2K (Tokai to Kamioka) experiment

- High intensity v_{μ} beam from J-PARC MR to Super-Kamiokande
- Observation of $v_{\mu} \rightarrow v_{e}$ (2013)
- Goals updated
 - \blacktriangleright Precise measurement of ν_{e} appearance
 - Precise meas. of v_{μ} disappearance
 - Measure CPV phase, contribution to mass hier. determ.

CERN-LHC Insertion Quadrupole

Fermilab and KEK collaboration for Inner Triplets

IR Upgrade for HL-LHC (2024-2035): 3000 fb⁻¹, 5x10³⁴ cm⁻² sec⁻¹

M. Sugano, T. Nakamoto

Development of new beam separation dipole (D1) at KEK

•Large aperture to obtain smaller β^* : $\phi 70 \text{ mm} \rightarrow \phi 150 \text{ mm}$ •Stronger kick for shorter distance between D1 and D2:

Field integral 26 Tm \rightarrow 35 Tm by SC magnet

Proposal to funding agency: 1 full-scale prototype, 6 series magnets. T. Nakamoto

US-MDP First General Meeting and Workshop, Feb. 7, 2017, Marriott Napa Valley, CA,

Outline

- Introduction/Overview
- Particle and Physics
- Other Fields

- RIKEN (Nuclear Physics) , NIRS (Medical)

• Future Prospects

Outline of Carbon Facilities in Operation in the World

Institute /Hospital	Location (Country)	Start year	Rooms	Irradiation method	Max. Energy MeV/u	Operation schedule	
NIRS	Chiba (Japan)	1994 ~	3+2	Wobbler Layer stacking Hybrid <mark>Scanning</mark>	400(C)	24 hours /6 days /10 month	
GSI	Darmstadt (Germany)	1997~ 2008	1	Raster Scanning	400(C)	3 blocks /year	
HIBMC	Hyogo (Japan)	2001~	5	Wobbler	320(C) 230(p)	16 hours / 5 days /12 month	
IMP	Lanzhou (China)	2006~	2	Wobbler Layer stacking	100 for V 400 for H	24 hours /7 day /variable	
HIT	Heidelberg (Germany)	2009~	3	Raster Scanning	430(C) 250(P)	16 hours / 5 days /12 month	
GHMC	Gunma (Japan)	2010~	3	Wobbler Layer stacking	400(C)	8 hours / 5 days /12 month	
CNAO	Pavia (Italy)	P: 2011~ (C: 2012)	3	Raster Scanning	400(C) 250(P)	220 days/yr	

Outline

- Introduction
- Particle and Physics
- Other field
- Future Prospects
 - Superconducting Magnets Nb3Sn and HTS

- SRF ---- ILC (Global),

ADS (China), ISNS (India)

From BEPC to BEPCII

BEPC was completed in 1988 with luminosity 1×10³¹cm⁻²s⁻¹ @1.89GeV BEPC II was completed in 2009 Luminosity reached on April 5, 2016: <u>10×10³²cm⁻²s⁻¹ @1.89GeV</u>

After BEPCII what is the next high energy collider?

CEPC-SPPC

CEPC is an 240-250 GeV Circular Electron Positron Collider, proposed to carry out high precision study on Higgs bosons, which can be upgraded to a 70 TeV or higher pp collider **SPPC**, to study the new physics beyond the Standard Model.

Site selections (some main places)

1)

2)

3)

SPPC Design Scope (201701 version)

Baseline design

Y. Wang, J. Tang, Q. Xu et al.

- Tunnel circumference: 100 km
- Dipole magnet field: 12 T, using iron-based HTS technology
- Center of Mass energy: >70 TeV
- Injector chain: 2.1 TeV

Upgrading phase

- Dipole magnet field: 20 -24T, iron-based HTS technology
- Center of Mass energy: >125 TeV
- Injector chain: 4.2 TeV (adding a high-energy booster ring in the main tunnel) in the place of the electron ring and booster)

Development of high-field superconducting magnet technology

- Starting to develop required HTS magnet technology before applicable ironbased HTS wire is available (in 5~10 years)
- models by ReBCO (or Bi-2212) and LTS wires can be used for specific studies: stress management, quench protection, field quality control and fabrication methods

How to design a "good" accelerator magnet?

Concept of the SPPC 20-T Dipole Magnet

K. Zhang et. al., 2-D Mechanical Design Study of a 20-T Two-in-One Common-Coil Dipole Magnet for High-Energy Accelerators, IEEE Trans. Appl. Supercond., VOL. 26, NO. 4, 2016, 4003705

ILC GDE to LCC

ILC Acc. Design Overview (TDR)

[·••

ILC SRF ML Parameters

1.3 GHz Nb 9-cellCavities	16,024
Cryomodules	1,855
SC quadrupole pkg	673
10 MW MB Klystrons & modulators	~400

KEK 9-Cell Cavity (KEK-01/02)reached 36/38 MV/m

Y. Yamamoto, E. Kako, H. Hayano

KEK-STF: Cavity/CM Performance, and RF and Beam Test Preparation

SRF cavity Gradient (MV/m) before/after CM Assembly												
Module	CM1a			CM1b				CM2a				
Cav. #	1	2	3	4	5	6	7	8	9	10	11	12
V. Test (CW)	37	36	38	36	37	35	39	36	12	36	32	32
in CM (pulse)	39	37	35	36	26	16	26	32	18	34	33	32
Gradient stable Degraded							Gradient stable					
* <g> : 30 MV /m (12 Cay.) , 35 MV/m (best 8)</g>												

FY14: CM1+CM2a (8+4) assembly FY15: Cavity individually tested in CM RF power system in preparation FY16: 8-cavity string to be RF tested FY17: Beam Acceleration expected (to reach > 250 MeV)

A SCRF Industrialization Model

China has been already modelling/functioning as an industrialization partner

Global SRF Collaboration

ILC 1.3 GHz SCRF R&D at IHEP

The CAS ADS Program (2011-2017)

- The program of "Advanced Nuclear Fission Energy --- the Accelerator Driven Sub-critical System" was initiated by CAS under the frame of "Strategic Technology Pilot Project" in 2011
- The ultimate goal is to build an industrial-scale demo facility for the development of advanced fission energy
- The budget is ¥1.78 billion for a five-year period
- IMP is the leading institute to carry out the research in cooperation with a number of participants.

New Project CIADS (2017-2022)

China Initiative Accelerator Driven System

• Location: Huizhou, Guangdong Prov.

RRCAT (India): Proposed ISNS Facility

The SRF infrastructure to support : ISNS activity and Participation in IIFC related activities

RRCAT: SRF Infrastructure facilities

Cavity fabrication & inspection facility

Cavity Forming Facility

15 kW EBW Machine

3D CMM

Optical Inspection Bench

Material Characterization facility

SIMS Facility

Universal Testing Machine

Laser scanning confocal microscope

RRCAT* Cavity Fabrication Facility

Nd-YAG laser beam welding facility – for 1.3 GHz single-cell cavity

A novel technique of fabrication of SRF cavities using Nd-YAG laser welding process, has been developed at RRCAT. The process has received patent from Japan.

A 1.3 GHz single-cell cavity fabricated using the facility was processed and tested at Fermilab. The cavity produced an accelerating gradient > 31 MV/m

Welding of single-cell 650 MHz cavity

Thank you for your attentions